Minimum Criteria for DNA Damage-Induced Phase Advances in Circadian Rhythms
نویسندگان
چکیده
Robust oscillatory behaviors are common features of circadian and cell cycle rhythms. These cyclic processes, however, behave distinctively in terms of their periods and phases in response to external influences such as light, temperature, nutrients, etc. Nevertheless, several links have been found between these two oscillators. Cell division cycles gated by the circadian clock have been observed since the late 1950s. On the other hand, ionizing radiation (IR) treatments cause cells to undergo a DNA damage response, which leads to phase shifts (mostly advances) in circadian rhythms. Circadian gating of the cell cycle can be attributed to the cell cycle inhibitor kinase Wee1 (which is regulated by the heterodimeric circadian clock transcription factor, BMAL1/CLK), and possibly in conjunction with other cell cycle components that are known to be regulated by the circadian clock (i.e., c-Myc and cyclin D1). It has also been shown that DNA damage-induced activation of the cell cycle regulator, Chk2, leads to phosphorylation and destruction of a circadian clock component (i.e., PER1 in Mus or FRQ in Neurospora crassa). However, the molecular mechanism underlying how DNA damage causes predominantly phase advances in the circadian clock remains unknown. In order to address this question, we employ mathematical modeling to simulate different phase response curves (PRCs) from either dexamethasone (Dex) or IR treatment experiments. Dex is known to synchronize circadian rhythms in cell culture and may generate both phase advances and delays. We observe unique phase responses with minimum delays of the circadian clock upon DNA damage when two criteria are met: (1) existence of an autocatalytic positive feedback mechanism in addition to the time-delayed negative feedback loop in the clock system and (2) Chk2-dependent phosphorylation and degradation of PERs that are not bound to BMAL1/CLK.
منابع مشابه
Phase Resetting of the Mammalian Circadian Clock by DNA Damage
To anticipate the momentum of the day, most organisms have developed an internal clock that drives circadian rhythms in metabolism, physiology, and behavior [1]. Recent studies indicate that cell-cycle progression and DNA-damage-response pathways are under circadian control [2-4]. Because circadian output processes can feed back into the clock, we investigated whether DNA damage affects the mam...
متن کاملcGMP-Phosphodiesterase Inhibition Enhances Photic Responses and Synchronization of the Biological Circadian Clock in Rodents
The master circadian clock in mammals is located in the hypothalamic suprachiasmatic nuclei (SCN) and is synchronized by several environmental stimuli, mainly the light-dark (LD) cycle. Light pulses in the late subjective night induce phase advances in locomotor circadian rhythms and the expression of clock genes (such as Per1-2). The mechanism responsible for light-induced phase advances invol...
متن کاملPredicted Role of NAD Utilization in the Control of Circadian Rhythms during DNA Damage Response
The circadian clock is a set of regulatory steps that oscillate with a period of approximately 24 hours influencing many biological processes. These oscillations are robust to external stresses, and in the case of genotoxic stress (i.e. DNA damage), the circadian clock responds through phase shifting with primarily phase advancements. The effect of DNA damage on the circadian clock and the mech...
متن کاملDemonstration of rapid light-induced advances and delays of the human circadian clock using hormonal phase markers.
To determine the magnitude and direction of phase shifts of human circadian rhythms occurring within 1 day after a single exposure to bright light, plasma thyrotropin, melatonin, and cortisol levels and body temperature were monitored for 38 h in 17 men who were each studied two times, once during continuous dim light conditions and once with light exposure. After a period of entrainment to a f...
متن کاملLight treatment for sleep disorders: consensus report. II. Basic properties of circadian physiology and sleep regulation.
The rationale for the treatment of sleep disorders by scheduled exposure to bright light in seasonal affective disorder, jet lag, shift work, delayed sleep phase syndrome, and the elderly is, in part, based on a conceptual framework developed by nonclinical circadian rhythm researchers working with humans and other species. Some of the behavioral and physiological data that contributed to these...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2009